home   structure    disabled Versija neįgaliesiems  
         
   
Lietuvos socialinių mokslų centro Ekonomikos ir kaimo vystymo institutas
 
  LT  EN                  El. paštas: laei@laei.lt  
 
 
 
Mokslo publikacijos
2018-10-17

Energy Consumption, Economic Growth, and CO2 Emissions in G20 Countries: Application of Adaptive Neuro-Fuzzy Inference System

Abstract

Understanding the relationships among CO2 emissions, energy consumption, and economic growth helps nations to develop energy sources and formulate energy policies in order to enhance sustainable development. The present research is aimed at developing a novel efficient model for analyzing the relationships amongst the three aforementioned indicators in G20 countries using an adaptive neuro-fuzzy inference system (ANFIS) model in the period from 1962 to 2016. In this regard, the ANFIS model has been used with prediction models using real data to predict CO2 emissions based on two important input indicators, energy consumption and economic growth. This study made use of the fuzzy rules through ANFIS to generalize the relationships of the input and output indicators in order to make a prediction of CO2 emissions. The experimental findings on a real-world dataset of World Development Indicators (WDI) revealed that the proposed model efficiently predicted the CO2 emissions based on energy consumption and economic growth. The direction of the interrelationship is highly important from the economic and energy policy-making perspectives for this international forum, as G20 countries are primarily focused on the governance of the global economy.

 

Keywords: energy; CO2; growth; adaptive neuro-fuzzy inference system (ANFIS)

 

https://doi.org/10.3390/en11102771

 

Impact Factor: 2.676  (2017 Journal Citation Reports, Clarivate Analytics, 2018)

 

 

Mardani, A.; Streimikiene, D.; Nilashi, M.; Arias Aranda, D.; Loganathan, N.; Jusoh, A. 2018. Energy Consumption, Economic Growth, and CO2 Emissions in G20 Countries: Application of Adaptive Neuro-Fuzzy Inference System. In Energies,  Volume 11, Issue 10, 2771; DOI: https://doi.org/10.3390/en11102771 [Science Citation Index Expanded].

 




derlius_2020.jpg
Baneris-8.jpg
Virselis_2019_raudona_lt.png
B_34658va3p.jpg
9B08E3R.jpg
c9l3L9fBmR.jpg
zedine1.jpg
                 
LAEI  |  A. Vivulskio g. 4A-13, 03220 Vilnius  |  Tel. (8 5) 2614525  |  Faks. (8 5) 2614524  |  El. paštas laei@laei.lt  |  Įm. kodas 111952970  |  PVM mokėtojo kodas LT119529716
Valstybės biudžetinė įstaiga. Duomenys kaupiami ir saugomi juridinių asmenų registre, kodas 111952970
  Pagaminta Xserv.lt