home   structure    disabled Versija neįgaliesiems  
         
     
  LT  EN                  El. paštas: laei@laei.lt  
 
 
 
Mokslo publikacijos
2019-06-10

Prioritization of low-carbon suppliers based on Pythagorean fuzzy group decision making with self-confidence level

Abstract

Business decisions often require economic analysis involving uncertainties. This study brings forward the multi-attribute group decision making (MAGDM) framework based upon Pythagorean fuzzy (PF) sets with self-confidence of decision makers. By incorporating the ideas of the order-inducing variables of the induced ordered weighted averaging (IOWA) operator, we propose two PF confidence aggregation methods, namely PF confidence induced ordered weighted averaging (PFCIOWA) operator and PF confidence induced hybrid weighted averaging (PFCIHWA) operator. The focal property of the devised operators is their ability to take into consideration both the evaluation data and its corresponding confidence levels. Moreover, a MAGDM method based on the developed operators is adopted. Finally, the practicality of the method is tested by using low carbon supplier selection problems. The new approach is compared against the existing ones in order to check its applicability and validity. As an empirical case, the low carbon supplier selection problem is solved.

 

Keywords: Pythagorean fuzzy set, self-confidence level, IOWA operator, MAGDM, low carbon supplier selection.

 

https://doi.org/10.1080/1331677X.2019.1615971

 

 

Zeng, S.; Peng, X.; Baležentis, T.; Streimikiene, D. 2019. Prioritization of low-carbon suppliers based on Pythagorean fuzzy group decision making with self-confidence level. In Economic Research-Ekonomska Istraživanja. Vol. 32, Issue 1, p. 1073-1087, ISSN: 1331-677X (Print), 1848-9664 (Online); https://doi.org/10.1080/1331677X.2019.1615971; [ISI (Social Sciences Citation Index (SSCI)), Scopus, GEOBASE, CABI, RePec, EBSCO (Business Source Complete, Business Source Elite, Business Source Premier, Business Source Ultimate, TOC Premier), CNIK, OCLC, Naver and Directory of Open Access Journals (DOAJ)].

 




derlius_2018.jpg
Baneris-8.jpg
Virselis 2018_melynas_e-knyga.jpg
B_34658va3p.jpg
9B08E3R.jpg
c9l3L9fBmR.jpg
                 
LAEI  |  V. Kudirkos g. 18–2, 03105 Vilnius  |  Tel. (8 5) 2614525  |  Faks. (8 5) 2614524  |  El. paštas laei@laei.lt  |  Įm. kodas 111952970  |  PVM mokėtojo kodas LT119529716
Valstybės biudžetinė įstaiga. Duomenys kaupiami ir saugomi juridinių asmenų registre, kodas 111952970
  Pagaminta Xserv.lt