home   structure    disabled Versija neįgaliesiems  
         
     
  LT  EN                  El. paštas: laei@laei.lt  
 
 
 
Mokslo publikacijos
2020-10-12

A multi‐criteria sustainable supplier selection framework based on neutrosophic fuzzy data and entropy weighting

Abstract

The gains in corporate sustainability are important for business development under the increasing competition and climate change. The importance of the green and sustainable supplier selection has increased due to the environmental concerns and regulations. The information for business decisions is often vague and imprecise. Therefore, this paper develops a fuzzy methodology for sustainable supplier selection based on fuzzy information. Single‐valued neutrosophic set (SVNS) is a very popular tool for processing potentially uncertain information provided by decision‐makers. Thus, SVNS is considered as a useful extension of the existing methods in uncertain complex situations. In order to facilitate the multi‐attribute decision‐making (MADM), this paper develops a new similarity measure for the SVNSs and explores its application possibilities. For achieving the aim, a single‐valued neutrosophic (SVN) hybrid weighted similarity (SVNHWS) measure is presented to reflect degree of similarity of SVNSs more effectively. Moreover, a method based on the SVNHWS and entropy measures is constructed for handling SVN MADM problems, in which, the entropy measure is used to derive the unknown weights information of attributes. Finally, an illustrative mathematical example dealing with the sustainable supplier selection is provided. The reliability of the proposed technique is tested by means of the comparative analysis.

 

KEYWORD: Sentropy weight, MADM, neutrosophic set, similarity measure, sustainable supplier selection,sustainable supply chain.

 

Zeng, S.; Hu, Y.; Balezentis, T.; Streimikiene, D. 2020. A multi‐criteria sustainable supplier selection framework based on neutrosophic fuzzy data and entropy weighting. Sustainable Development. Vol. 28, Issue 5, p. 1431–1440; Online ISSN:1099-1719; https://doi.org/10.1002/sd.2096; [ABI/INFORM Collection (ProQuest); AgBiotech News & Information (CABI); AgBiotechNet (CABI); Agricultural & Environmental Science Database (ProQuest); Business Premium Collection (ProQuest); CAB Abstracts® (CABI); Current Contents: Social & Behavioral Sciences (Clarivate Analytics); Environment Index (EBSCO Publishing); GeoArchive (Geosystems); GEOBASE (Elsevier); Geotitles (Geosystems); Global Health (CABI); Horticultural Science Abstracts (CABI); IBR & IBZ: International Bibliographies of Periodical Literature (KG Saur); Irrigation & Drainage Abstracts (CABI); Journal Citation Reports/Social Science Edition (Clarivate Analytics); Leisure Tourism Database (CABI); Leisure, Recreation & Tourism Abstracts (CABI); Materials Science & Engineering Database (ProQuest); Natural Science Collection (ProQuest); Plant Breeding Abstracts (CABI); Plant Genetic Resources Abstracts (CABI); Political Science Database (ProQuest); Postharvest News & Information (CABI); ProQuest; Proquest Business Collection (ProQuest); ProQuest Central (ProQuest); ProQuest Politics Collection (ProQuest); ProQuest Sociology Collection (ProQuest); Rural Development Abstracts (CABI); SciTech Premium Collection (ProQuest); SCOPUS (Elsevier); Social Science Premium Collection (ProQuest); Social Sciences Citation Index (Clarivate Analytics); Soils & Fertilizers Abstracts (CABI); Technology Collection (ProQuest); Tropical Diseases Bulletin (CABI); Web of Science (Clarivate Analytics); World Agricultural Economics & Rural Sociology Abstracts (CABI)].

 




derlius_2020.jpg
Baneris-8.jpg
Virselis_2019_raudona_lt.png
B_34658va3p.jpg
9B08E3R.jpg
c9l3L9fBmR.jpg
                 
LAEI  |  A. Vivulskio g. 4A-13, 03220 Vilnius  |  Tel. (8 5) 2614525  |  Faks. (8 5) 2614524  |  El. paštas laei@laei.lt  |  Įm. kodas 111952970  |  PVM mokėtojo kodas LT119529716
Valstybės biudžetinė įstaiga. Duomenys kaupiami ir saugomi juridinių asmenų registre, kodas 111952970
  Pagaminta Xserv.lt